Conditioning in the Application of -orthogonal Transformations

نویسندگان

  • Michael Stewart
  • Paul Van Dooren
چکیده

This work attempts to give a uniied treatment of sensitivity issues in problems involving the application of-orthogonal transformations. Algorithms for such problems are sometimes implemented with minor variations in the way elementary hyperbolic transformations are used to construct a-orthogonal transformation. This results in a possible variation in the condition of the elementary transformations which can obscure the condition of the underlying problem. To characterize the possible elementary transformations which can be used to solve a given problem and to clarify important conditioning issues, we introduce a canonical decomposition of a partitioned-orthogonal matrix which is analogous to the CS decomposition of a partitioned orthogonal matrix. We then proceed to prove optimality properties of the hyperbolic transformations given by the decomposition and show how these properties relate to the sensitivity of Cholesky downdating and block Toeplitz factorization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point results for Ʇ_Hθ- contractive mappings in orthogonal metric spaces

The main purpose of this research is to extend some fixed point results in orthogonal metric spaces. For this purpose, first, we investigate new mappings in this spaces. We introduce the new notions of functions. Then by using it, we define contractive mappings and then we establish and prove some fixed point theorems for such mappings in orthogonal metric spaces. Then by utilizing examples of ...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Operads of higher transformations for globular sets and for higher magmas

‎In this article we discuss examples of fractal $omega$-operads‎. ‎Thus we show that there is an $omega$-operadic approach to explain existence of‎ ‎the globular set of globular setsfootnote{Globular sets are also called $omega$-graphs by the French School.}‎, ‎the reflexive globular set of reflexive globular sets‎, ‎the $omega$-magma of $omega$-magmas‎, ‎and also the reflexive $omega$-magma ...

متن کامل

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

Steps toward the weak higher category of weak higher categories in the globular setting

We start this article by rebuilding higher operads of weak higher transformations, and correct those in cite{Cambat}. As in cite{Cambat} we propose an operadic approach for weak higher $n$-transformations, for each $ninmathbb{N}$, where such weak higher $n$-transformations are seen as algebras for specific contractible higher operads. The last chapter of this article asserts that, up to precise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996